A Tridiagonal Matrix

ثبت نشده
چکیده

 = αI +βT, where T is defined by the preceding formula. This matrix arises in many applications, such as n coupled harmonic oscillators and solving the Laplace equation numerically. Clearly M and T have the same eigenvectors and their respective eigenvalues are related by μ = α+βλ . Thus, to understand M it is sufficient to work with the simpler matrix T . Eigenvalues and Eigenvectors of T Usually one first finds the eigenvalues and then the eigenvectors of a matrix. For T , it is a bit simpler first to find the eigenvectors. Let λ be an eigenvalue (necessarily real) and V = (v1,v2, . . . ,vn) be a corresponding eigenvector. It will be convenient to write λ = 2c . Then 0 = (T −λI)V = 

منابع مشابه

On the nonnegative inverse eigenvalue problem of traditional matrices

In this paper, at first for a given set of real or complex numbers $sigma$ with nonnegative summation, we introduce some special conditions that with them there is no nonnegative tridiagonal matrix in which $sigma$ is its spectrum. In continue we present some conditions for existence such nonnegative tridiagonal matrices.

متن کامل

Determinants of Block Tridiagonal Matrices

A tridiagonal matrix with entries given by square matrices is a block tridiagonal matrix; the matrix is banded if off-diagonal blocks are upper or lower triangular. Such matrices are of great importance in numerical analysis and physics, and to obtain general properties is of great utility. The blocks of the inverse matrix of a block tridiagonal matrix can be factored in terms of two sets of ma...

متن کامل

The Structured Distance to Normality of an Irreducible Real Tridiagonal Matrix

The problem of computing the distance in the Frobenius norm of a given real irreducible tridiagonal matrix T to the algebraic variety of real normal irreducible tridiagonal matrices is solved. Simple formulas for computing the distance and a normal tridiagonal matrix at this distance are presented. The special case of tridiagonal Toeplitz matrices also is considered.

متن کامل

Eigendecomposition of Block Tridiagonal Matrices

Block tridiagonal matrices arise in applied mathematics, physics, and signal processing. Many applications require knowledge of eigenvalues and eigenvectors of block tridiagonal matrices, which can be prohibitively expensive for large matrix sizes. In this paper, we address the problem of the eigendecomposition of block tridiagonal matrices by studying a connection between their eigenvalues and...

متن کامل

Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions

In this paper, we consider a general tridiagonal matrix and give the explicit formula for the elements of its inverse. For this purpose, considering usual continued fraction, we define backward continued fraction for a real number and give some basic results on backward continued fraction. We give the relationships between the usual and backward continued fractions. Then we reobtain the LU fact...

متن کامل

A tridiagonal matrix construction by the quotient difference recursion formula in the case of multiple eigenvalues

In this paper, we grasp an inverse eigenvalue problem which constructs a tridiagonal matrix with specified multiple eigenvalues, from the viewpoint of the quotient difference (qd) recursion formula. We also prove that the characteristic and the minimal polynomials of a constructed tridiagonal matrix are equal to each other. As an application of the qd formula, we present a procedure for getting...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016